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Abstract

The equations are represented in a simplified format with only a few leading terms
needed in the expansion. The set of equations are then solved numerically using vec-
tor finite element method. To validate our algorithm, we analyzed a two-dimensional
rectangular waveguide consisting of a linear core and nonlinear identical cladding.
The exact nonlinear solutions for three different modes of propagations, TE(Q, TE1,
and TE2 modes are generated and compared with the computed solutions. Next,
we investigate the effect of a more intense monochromatic field on the propagation
of a "weak” optical field in a fully three-dimensional cylindrical waveguide.
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1 Introduction

Changes in the refractive index of a material can be induced by the appli-
cation of an external electric field. The presence of such a field distorts the
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electron motions in the atoms or molecules of a substance, or distorts the
crystal structure so that changes in the optical properties occur.This physical
phenomenon is known as Kerr effect. The refractive index in this case is ex-
pressed as ng + a|E|?, where the total refractive index consists of the linear
refractive index ng and an added effect due to the intensity of an externally
applied field with « as the Kerr coefficient of the material. Non-linear Kerr
effects in optical fibers are manifested in such effects as optical solitons, pulse
compressions and modulation instabilities. Although the nonlinearity of silica-
based optical fibers are small, some nonlinear effects can be observed without
difficulty.

We begin with the second-order wave equation governing the propagation
of light in a nonlinear medium as derived from Maxwell’s equations for an
arbitrary homogeneous dielectric medium as
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where ¢ is the speed of light in vacuum, and P = ¥(E) is a nonlinear function
of the electric field E, at every position in time. We write P as a sum of linear
and nonlinear parts

P =yYE+ Py, (2)
where
PNL = X(Q):E2 + X(3)E3 + h.o.t. (3)

It follows from Eqn. 1 that
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where ¢ = 1+47x(". In a media possessing centrosymmetry, the second-order
nonlinear term is absent since the polarization must reverse exactly when the
electric field is reversed. The dominant nonlinearity is then of third order,

Py, = xYE? (5)
where x(®) is a third-order tensor. These equations provide the general frame-

work for studying third-order nonlinear effect which is also known as optical
Kerr effect. In addition, if we assume an electric field, E(t), of the form

E(t) = E(w)e™ (6)



it then follows that for a linearly polarized field, we get E(w) = &x\3), |B(w)[2E(w).
Consequently, the wave equation governing the propagation of light in a non-
linear medum can often be represented by

PE
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where ng = ¢y/c? and o = (47y)/c?. Typically, changes in the refractive index
by Kerr effects are small and values for ¥ are in the range of 1070 — 10713,

2 Perturbation Method Applied to Non-linear Maxwells Equation

In the case where the governing equations are nonlinear, one approach is to
use a perturbation series solution to analyze the behavior of the function in a
limiting situation. We consider the numerical solution of the nonlinear wave
equation given by

PE

The approach is to try a power series solution such as
E(x,t) = Eo(x,1) + aE1(x,t) + o®Ey(x, t) + h.o.t. 9)
The series is inserted into Eqn. 8, along with the corresponding boundary

conditions.Then the coefficients with like powers are grouped together. We
then get
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and so on. In doing so, the problem of solving the nonlinear wave equation
(Eqn. 8 ), can be done by solving the two linear wave equations Eqns. 10 and
11, over a time interval and adding the two solutions to get

E = Ey(x,t) + oE;(x, 1) (12)

Note that the resulting series does not need to to converge for any value of
a. For most practical applications, the solution is useful in approximating the



equation even with just two or three terms on the expansion. From a com-
putational standpoint convergence of the series refers to the behavior of the
equation towards the tail end of the series. In an asymptotic series, the terms
decrease rapidly for sufficiently small . When the terms decrease rapidly, if
we sum just the few terms, we know that the error incurred is of the order
of the next term; which means that we can get a good estimate of the sum.
This is one reason why asymptotic series, even when divergent, are pratically
useful. In our study, we validate the perturbation approach by comparison
with known analytical solution for a two-dimensional weakly guided optical
wave propagating a three-layer optical guide with a linear core and a nonlinear
cladding.

3 Vector Finite Element Formulation

Numerical solutions of the linear wave equations are first obtained by first

converting the linear wave equations into a variational equation posed over

suitable function spaces. We denote Lo(2) to be a Hilbert space of functions

with [u2 = fuTu d(Q) < oo and inner product (u,v) = fu’v d(Q). The
Q Q

Hilbert space
H(curl; Q) = {u € Ly() : Vxu € Ly(2)} (13)

If K7 and K are two domains that border on one another, then u € H(curl; Q2 =
K; UKj) if and only if u X n is the same on each side of the face I' = K; N K,

[1]. As usual, n is designated the exterior unit normal on I'. Consequently,

H(curl; Q) is an appropriate space for the electric field E. The subspace of

H(curl; Q) containing the vector fields wiith vanishing tangential trace u x n

on I' = Boundary (Q2) is denoted by Hy(curl; 2).

A natural way of defining the weak form of the linear wave equation (Eq.10),
is to determine a function Ey € H(curl; (2) such that

2

ﬁ(nOEO, E*) = (V’E,, VE") (14)

for all E* € H(curl;2) . Consequently, if Eq is a classical solution of the
nonlinear wave equation, then it is a solution of the weak equation.

We shall approximate the domain {2 with a hexahedral mesh consisting of
Ki,2=1,...., N hexahedra. Each of the hexahedra K can be mapped using the
standard one-to-one trilinear mapping (z,y, 2) = B(&,n, ) to the reference



element Ky = {—1 < W, 7, < 1}, see Figure 1. This implies that the mapping
B has a nonsingular Jacobian matrix J.
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Fig. 1. Reference element Ky = {—1 < ¥, 7, ¢ < 1}.
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The edge labeling convention consistent with the node labeling for the hexa-
hedra is tabulated below.

edge,a; || © || edge,a;

.

1-2 7 2-3
4-3 8 6-7
5-6 9 1-5

8-7 10 2-6
1-4 11 4-8
5-8 12 3-7

S O W N =

Next, we define vector polynomials on K, as follows

WO =[1-y)(1=2) 00 W2=[0 (1—2)1-2) 0] W =[00 (1-2)1-y)
W =3[+ D=2 0 0 WE =50 (e+1)(1-2) O W0=300 0 e+ D1 -0)]
Wi =31+ 1)(1=y) 0 0] WE =3[0 (e +1)(1=2) 0] W =3[0 0 (y+1)(1 ~ )

W =3+ 1)(+1) 0 00 WE= 30 (z+1)(z+1) 0] We" =3[0 0 (o+1)(y+ 1)

Note that ¢ W]-(O) = 0;;. Vector polynomials on K are given by W; = J,1Wi(0).

The Galerkin method shown below|[2], constructs approximations

Eo = > ejW; € span[Wh, ..., Wy] C Hy(curl : Q) (16)

i=1



such that

2

@(nlEo,Wi) = (VE(),VWZ),Z = 1,...,Ne (17)

where N, is the number of internal edges. This results in a set of ordinary
differential equations

d2€0
MW = Ke() (18)
where
M = nymatrix[(W;, W;)] K = matrix[(VW;, VW;)] (19)

Leap-frog time differencing is used to integrate Eqn. 18;

n+1 2 n
e 2M + At*K -1 e
= o (20)
e I 0 e

A similar discretization of Eqn. 11 yields the set of ordinary differential equa-
tions
d2€1

MW = Kel + nf1|e0|2Ke0 (21)

Leap-frog time differencing of Eqn. 21 yields

elt! 2M + At’K —1 e? eptt
Ll V| ntadept | (22)
el I 0| |ert
The numerical solution is then given by
e"t! =ept! + el (23)

4 Numerical Solution of the Non-Linear Wave Equation

In general, nonlinear solutions can’t be solved exactly except for certain non-
linear wave equations. The exact solutions for stationary and unbounded Kerr
nonlinear medium[3] are adopted here as our starting point in validating our



approach. We first consider the exact solution of the nonlinear wave equation
where we assume the solution to be of the form

expiﬂzfiwt (24)

The geometry is shown below in Fig. 2. It has the linear core sandwiched by
two identical nonlinear cladding. We consider three modes; TEO, TE1 and
TE2 modes. TEO mode is an optical wave with a maximum located in the
core region and decays monotonically in the cladding. TE1 mode has two field
maxima and depending on the intensity of the applied field, it can have the
maxima inside the core or in the cladding. Finally, the TE2 mode has 3 field
maxima, one inside the core and the other two in the cladding. The modes that
have the field maxima in the nonlinear cladding is especially important [4],[5],
since these are responsible for the optically controlled directional couplers.

Fig. 2. Geometry of a three-layer optical guide with a linear core and nonlinear
cladding.

In our validation study, we used the equations given below and extended the
geometry in the cladding such that far-field approximations can be used and
will not interfere with the actual cladding solution. Time dependence is also
included in both the exact and computed solutions.

The general solutions for each layer are

El(lo) (x) = Asech|—y(z —d) + 1] = >d (25)
E{V(z) = Beos|K(z —d) +¢] —d<z>d (26)
E!SQ) (z) = Asechly(z +d) + o] z<d (27)



Eqn. 26 describes the solution for the linear core region of thickness 2d, with
d = 5um. The parameters are given as:

B =5.0 x10° (TE0, TE1, TE2 modes)

A= 1.55um
o =2.44 x 1072 (V/m)~2 (28)
€1 = 2.403

¢ = 1.5 (TE1 mode), 0. (TEO and TE2 modes)

The constant, K is evaluated as

K? = k% — B2 (29)

where k is the wave number and f is the propagation constant.

The two nonlinear cladding regions, represented by Eqns. 25 and 27, are sym-
metric which would allow for the simplification of the constants and other
variables.

A =5.x10° (TEO and TE1 modes), —5.75 x 10° (T E2 mode)
€ = 2.253 (30)
Yo, Yo = cosh™ (A/E©), cosh™'(A/E®)

The constant v can be evaluated by

—y* = ek — (31)

The other constants in Eqns. 25 and 27 are determined in a similar way as
the linear equation. This set of exact solution is fully nonlinear but smooth
with no numerical and physical instabilities present for a range of A and B
constants from 500 V/m up to 5 x 10° V/m.

5 Discussion of Results

To verify our algorithm we compared the exact solution presented previously
with the computed solutions. A two-dimensional hexahedral mesh is generated
using Truegrid[6], a commercial grid generation package. This mesh consists



of 32,200 elements, 49,068 nodes, 130,077 edges and 113,210 faces. This mesh
configuration was chosen as a result of several mesh refinement and redistribu-
tion work. This was necessary in order to ensure that we can properly resolve
the optical wave as it propagates through the fiber. The computational do-
main was chosen such that the waves in the cladding was fully decayed at the
outer boundaries of the cladding and the propagation direction was chosen
long enough to be able to make the comparisons. The core material is glass
and the two identical nonlinear claddings is nitrobenzene. Sommerfeld bound-
ary condition is enforced at the exit and PEC (perfect electric conductor)
conditions are enforced everywhere else.

The simulation is started when the input optical wave is launched at the inlet
y = 0. The continuous wave voltage source has a spatial dependence shown
in Eqns. 25-26 while the temporal dependence is a continuous sine wave. The
leading-edge of the wave front is characterized by a Gaussian envelope and
reaches a full sine wave at the end of its rise time. The optical wave is allowed
to propagate through the core for about 10u. Snapshots of the computed
electric field magnitude, E at ¢ = 2.52 x 107 %s and ¢t = 7.10 x 10 %s are
shown in Figs. 3-5 for all the TE modes. The color contours has a range of
5.2 x 10°V (red) down to 0.0V (blue) . The leading edge of the wave front is
charaterized by the Gaussian envelope which is not used in the analytical
solution. Comparison between the computed and exact solutions are made
when this Gaussian envelope has passed through the fiber. The propagation
of the optical waves remain smooth throughout the rest of the simulation time.

Fig. 3. TEO mode propagation at ¢t = 2.52 x 102 and at ¢ = 7.10 x 10 %s.
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Fig. 4. TE1 mode propagation at ¢t = 2.52 x 1072 and at ¢ = 7.10 x 107 %s.
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Fig. 5. TE2 mode propagation at ¢t = 2.52 x 1072 and at ¢ = 7.10 x 107 %s.

In Fig. 6 lineplot comparisons between TEO computed and analytical solu-
tions are shown at © = 0 and as a function of the propagation distance. Good
comparison is obtained with the maximum error (percent difference between
the exact and computed solution) to be less than 5 %. Further comparisons
between exact and computed solutions are presented in Figs. 7-9 at a prop-
agation distance of y = 3um and at t = 7.10 x 10~%s. Differences in the
comparisons are observed in the areas of high gradients.

Fig. 6. TEO0 mode comparison between exact and computed solution at
t="7.10 x 10 %.
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Fig. 7. TE0 mode comparison between exact and computed solution at
t=17.10 x 107%s and y = 3um.
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Fig. 8. TE1l mode comparison between exact and computed solution at
t=17.10 x 107%s and y = 3um.

% ]

0
dial Distance (m)

Fig. 9. TE2 mode comparison between exact and computed solution at
t=17.10 x 107%s and y = 3um.

The second simulation we performed is that of a fully three-dimensional time-
dependent simulation of an optical fiber. In practice, this usually requires a
larger domain than considered here. However, just to verify our algorithm a
much smaller domain is considered. The hexahedral mesh consists of 62,013
nodes, 58,320 elements, 182,288 edges, and 178,596 faces. The optical fiber has
a core radius of 1.5 ym, and a cladding radius of 4.0 ym with a propagation
distance of about 3um. The purpose of this simulation is to verify our algo-
rithm for a more realistic computational domain and to increase the intensity
of the input wave such that other non-linear effects might be observed. The
input wave launched at the inlet section is a three-dimensional version of the
exact solution presented in Eqns. 25-27 for a TEO mode case. Here, B = 5x10°
and A = 2.5 x 10°. The temporal dependence is prescribed as a continuous
sine wave with a Gaussian envelope at the leading edge of the wave. The input
wave is propagated for up to ¢ = 0.671 x 10~?s. he time evolution of the weakly
guided wave, Fig. 10, is presented for ¢ = 0.229 x 107%s ,¢ = 0.389 x 10~ %s,
and for t = 0.459 x 107%s at a given z-station of 0.9um. The maximum value
of the electric field is set at their individual levels in Figs. 10a-c in order to see
the details of the wave deformation. The peak value for Fig. 10a is 2.3 x 105V
(red), Fig. 10b is 10.7 x 10%V (green), and Fig. 10c is 18.8 x 106V (light blue).
Notice that the wave starts to spread out and steepen as it evolves in time.
This trend can be readily seen in Fig. 10d, where a lineplot comparison at the
transverse location of y = Oum is plotted starting at ¢ = 0.229 x 10~ %s (blue)
to t = 0.459 x 10™s (grey).

11



The spatial progression for a fixed time, ¢t = 0.459 x 10~%s is presented next
in Fig. 11 for z = 0.48um , z = 1.80um, and z = 2.25um. As the pulse
travels in the propagation distance, the shape and magnitude of the pulse
also changes. Polarization effect is also noticed in the latter two stations. The
maximum range of the electric field is 17.0 x 10%V (red) for all three slices.
In the last sub-figure (Fig 11d), a lineplot comparison at y = Oum is plotted
for z = 0.48um (blue) up to z = 2.25um (grey), to show other details of the
wave.
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Fig. 10. TEO mode temporal evolution in a cylindrical waveguide, (a)
t = 0229 x 107% s, (b) t = 0.389 x 107 5, (c) t = 0.459 x 107 s, (d) Line
plot comparison at y = Oum.
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Fig. 11. TEO mode spatial propagation in a cylindrical waveguide, (a) z = 0.48um,
(b) z = 1.80um, (c) z = 2.25um, (d) Line plot comparison at y = Qum.
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6 Concluding Remarks

A perturbation approach to solve a nonlinear Maxwell’s equation due to Kerr
effect was presented and discussed. This approach simplifies the nonlinear
equations into two linear equations that can be solved numerically using Vec-
tor Finite Element formulation. To validate our approach, an exact nonlinear
soution was propagated in time and space and compared with the computed
solution. Good agreement was obtained between the exact and computed so-
lution for an electric field input of medium intensity. The second simulation
we performed was propagating an optical wave in a short fiber for a highly
intense electric field input. Reshaping of the wave both in time and space
are observed. Polarization effects are also noticed. In the next paper, further
studies will be done to quantify the balancing effects between nonlinearity and
dispersion.
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